Archéologie et réalité virtuelle : les nouvelles techniques de production, d'exploration et d'analyse d'environnements archéologiques virtuels



jean_baptiste_barreau_.jpg

Jean-Baptiste Barreau, ingénieur d’études CNRS en informatique au sein de l’UMR CReAAH de l’OSUR, a soutenu le 10 juillet 2017 une thèse intitulée "Techniques de production, d'exploration et d'analyse d'environnements archéologiques virtuels".

Jean-Baptiste Barreau, ingénieur d’études CNRS en informatique au sein de l’UMR CReAAH de l’OSUR, a soutenu le 10 juillet 2017 une thèse intitulée "Techniques de production, d'exploration et d'analyse d'environnements archéologiques virtuels". Cette thèse, remarquable et remarquée, est originale, car elle est à l’interface de l’archéologie et des nouvelles technologies : modélisation 3D, reconstitution de sites et de monuments, interaction en réalité virtuelle.

Ces techniques sont particulièrement utiles aux archéologues, car elles donnent à voir et à analyser ce qui n’existe plus, de surcroît de manière dynamique et interactive. En effet, si les possibilités de numérisation 3D des vestiges actuels d'un site archéologique par le biais des dernières techniques d'acquisition 3D (photogrammétrie/scan laser) aident à la compréhension de son fonctionnement, elles peuvent aussi permettre de véritables hypothèses de reconstitutions du site tel qu'il a pu l'être à une époque donnée. En outre, les besoins de la communauté archéologique concernant ces restitutions de structures ou d'environnements sont considérables. Au-delà d'un intérêt évident en termes de valorisation du patrimoine, celles-ci permettent de véritablement mieux appréhender leurs fonctionnements et les sociétés qui les ont occupés.

Le travail de Jean-Baptiste a ainsi permis, dans un premier temps, d’opérer, traiter et analyser différents niveaux de production d'environnements archéologiques 3D pour la recherche archéologique ; puis, dans un second temps, de concevoir et mettre en place des méthodes d'interactions et de simulations immersives. Leur objectif est de permettre aux archéologues de démontrer certaines hypothèses de recherche, notamment en travaillant sur la perception d'indices visuels pertinents. Éminemment interdisciplinaires, ces recherches impliquent des collaborations étroites avec d’autres partenaires de recherches du pôle scientifique rennais : l’université de Rennes 1, l’IRISA (laboratoire INRIA), le CNRS, et l’INSA.


Quelques exemples de productions d'environnements archéologiques 3D

L’objectif de la production d’environnements 3D est de fournir in fine des « restitutions de l’hypothétique ». Le point de départ de cette démarche est basé sur la numérisation de l’existant. Les premières restitutions réalisées par Jean-Baptiste ont ainsi eu pour sujet des châteaux, ou parties de ces châteaux, et une citadelle syrienne. Du fait de leur solidité et de leur résistance à l’érosion du temps, ces restitutions reposent sur des vestiges existants plus ou moins conséquents. Voici 3 exemples pour illustrer cette démarche : la porte des Champs du château d’Angers (Maine-et-Loire), le château de Coatfrec (Côtes-d’Armor) et la Citadelle d’Alep (Syrie).

Pour la porte des Champs du château d’Angers, l’objectif scientifique étant d’obtenir un probable état de la porte au XIIIe siècle. À partir de photos et informations qualitatives et quantitatives fournies par l’archéologue référent, une première itération de restitution castellaire non texturée a donc pu être réalisée. À partir des volumes correspondant à l’existant de la porte des Champs, le travail a consisté à créer, éditer et supprimer différents éléments indiqués par l’archéologue. L’objectif est alors de rendre compte, d’un point de vue surtout qualitatif, du contenu des retours de l’archéologue et du travail induit.


Angers1
Première itération de la restitution de la porte des Champs du château d’Angers au XIIIe siècle


Angers2
Rendu de l’itération actuelle de la reconstitution 3D de la porte des Champs du château d’Angers au XIIIe siècle



Concernant le château de Coatfrec, les vestiges étaient moins conséquents. Une numérisation par une entreprise allemande a fourni le nuage de points résultant. Avec celui-ci, quelques plans, croquis et discussions avec les archéologues, ont permis de proposer une restitution. Les textures étant plus homogènes, le travail de texturage a été moins long que dans le cadre de la porte des Champs.



Coatfrec
Rendus 3D montrant les sections Nord et Ouest du château de Coatfrec



Enfin, il reste encore suffisamment de vestiges pour constituer un modèle 3D de l’architecture initiale de la citadelle d’Alep en Syrie. Cependant, la situation de guerre civile rendant extrêmement difficile une numérisation "classique" par photogrammétrie ou lasergrammétrie, Jean-Baptiste a expérimenté un procédé pour produire un modèle 3D « aussi pertinent que possible » uniquement à partir de quelques photographies touristiques. Ce processus combine modélisation 3D sur un nuage de points de mauvaise qualité et du texture mapping à partir d’un corpus d’images disponibles sur internet.



Alep
Photos de la Citadelle d’Alep prises par un archéologue touriste, nuage de points de faible qualité et rendu final texturé du modèle 3D



Mais parfois, l’existant est… inexistant : on est obligé d’en passer par le traitement de la documentation archéologique disponible. Plusieurs travaux de reconstitution 3D ont donc concerné des environnements archéologiques pour lesquels l’existant ne permet au mieux que de faibles hypothèses. Il s’agit alors, en plus des échanges avec l’archéologue, d’intégrer de façon optimale la documentation qu’il aura constituée et de suivre une approche descendante dans laquelle les itérations avec l’archéologue permettent de valider la compréhension de ladite documentation et d’affiner chaque élément de l’environnement. La reconstitution du navire de la compagnie des Indes le Boullongne suit cette démarche documentaire itérative.

La modélisation 3D du navire s’est fondée sur des plans dessinés dans une monographie (Boudriot, 1983). De nombreux plans à l’échelle ont ainsi été numérisés et intégrés dans un logiciel de modélisation 3D, permettant à des graphistes du CNPAO (Conservatoire Numérique du Patrimoine Archéologique de l'Ouest : lire plus bas) de modéliser les différents objets du navire et son gréement. Ces éléments 3D sont d’abord issus de la lecture de la documentation faite par les graphistes, puis corrigés par l’historienne référente. Le modèle informatique final est ainsi "mathématiquement" composé de 408 233 polygones et 224 570 sommets. Les éléments ont été texturés grâce à des données recueillies par l’historienne, cependant, la plupart des textures restent fortement hypothétiques.



Boullongne1
Boullongne2
Sections, plans et étapes de reconstitution 3D du Boullongne


Boullongne3
Vue éclatée du modèle 3D et rendu final du Boullongne



La navigation dans un environnement archéologique virtuel

Une étape encore plus avancée dans la virtualité - et encore plus intégrative - est désormais envisageable grâce à des méthodes d'interactions et de simulations immersives. En effet, malgré les apports d’une production menée avec et pour les archéologues, il subsiste des manques liés au contrôle des hypothèses et des incertitudes. Il est en effet important de rester lucide sur le fait que ces productions 3D correspondent majoritairement à un niveau que l’on peut qualifier au mieux d’expertise et au pire d’opinion. L’enjeu est donc désormais de concevoir des outils de réalité virtuelle, en l’occurrence immersive, pouvant proposer un chemin vers la preuve, voire le consensus scientifique. Ces nouvelles méthodes et outils visent donc à vérifier comment les possibilités de navigation, d’interaction avec un objet et de simulation peuvent amener des archéologues à la construction, à l’analyse et à la valorisation d’une reconstitution la plus pertinente possible. Voici donc 2 exemples pour illustrer cette démarche immersive : la navigation au sein du cairn de l’île Carn (Finistère) et la simulation de flore au sein de l’habitation sucrière de Rémire (Guyane française).

Il est à noter d’emblée que l’intérêt majeur de cette démarche vise la navigation et l’interaction avec des objets d’environnements archéologiques virtuels… mais à l’échelle 1:1

Les intégrations de différents sites du corpus du CNPAO au sein de la plateforme Immersia sur le campus de Beaulieu de l'université de Rennes 1 ont entraîné des réflexions autour des modes de navigation. En effet, les sites étant bien hétérogènes, notamment au niveau de leurs dimensions, plusieurs modes ont été implémentés.



Echelle 1 1
Navigation libre au sein de l’épave d’Erquy, de la chapelle de Languidou et de la plantation sucrière de Rémire



La première intégration d’environnement archéologique 3D au sein de cette plateforme Immersia fut celle du cairn de l’île Carn. Les premiers retours des archéologues furent la bonne qualité de sensation d’immersion et de rendu. La grande taille de la plateforme permet une vision périphérique complète et rapide de la structure architecturale du cairn : 9,60 mètres de long, 3 mètres de profondeur, 3 mètres de haut, Immersia est une des plus grandes salles de réalité virtuelle au monde. La possibilité de navigation naturelle en (X,Y), « physique » pourrait-on dire, et de lévitation au Flystick permet de se déplacer facilement partout dans le cairn, aux dimensions du même ordre que celles de la plateforme, et de bien observer des parties intéressantes telles que des peintures, pierres de couleur, fentes, etc.. Outre la lévitation, cette navigation en (X,Y) reste impossible dans la réalité en raison de l’exiguïté d’accès et de la dangerosité du site.



Cairn
Accès difficile, intégration de la restitution 3D et exploration immersive du cairn de l’île Carn



De la même manière, la navigation libre a été testée sur un autre environnement archéologique, la plantation sucrière de Rémire en Guyane, en mettant notamment en avant la question de l’éclairage naturel. En archéologie, l’étude des activités agricoles représente un volet important, car elles touchent nécessairement l’humanité au moins depuis la révolution néolithique. Les liens évidents entre agriculture et ensoleillement ont amené Jean-Baptiste à étudier l’intégration d’une simulation de l’évolution de la lumière du soleil pendant une journée complète sur le site de la plantation sucrière.



Sucrerie Lumiere
Action sur la vitesse de l’alternance jour/nuit au sein de la sucrerie



La flore constitue l’élément majeur du site de la plantation sucrière. Jean-Baptiste a ainsi planté virtuellement de la végétation sur un rectangle d'une superficie de 1800 hectares, dont la topographie résulte d’altitudes issues de sondages, de cartes actuelles et du XVIIIe siècle. La végétation aux XVIIe-XVIIIe siècles étant cependant différente de celle d’aujourd’hui, au-delà des plantes utilisées dans l’activité du site d’après les sources directement liées (cacaoyer, caféier, canne à sucre et coton), des sources documentaires ont été exploitées. En comparant avec les sources d’un botaniste ayant visité l’endroit à l’époque, les plantes suivantes ont été intégrées : Baumier du Pérou, Cannelier de Ceylan, Campêche, Goyavier à grandes fleurs, Hura crepitans, Cacaoyer et Palétuvier blanc. Ainsi, en plus de la canne à sucre et du citronnier, il a fallu stocker quasiment chacune de ces plantes, à partir d’une bibliothèque de plantes 3D quand elles s’y trouvaient, ou les modéliser dans le cas contraire. Le placement des caféiers, des zones forestières et des plants de canne à sucre a été effectué de manière semi-automatique dans des zones évoquées par les sources. Notamment pour les plants de canne à sucre, des paramètres de densité et de différences aléatoires de positions/dimensions s’imposaient et ont donc été utilisés pour simuler la non-homogénéité de la réalité. Ce ne sont pas moins de 787 000 plantes qui sont ainsi affichées dans l’environnement archéologique virtuel, dont 782 000 plants de canne à sucre.  Compte tenu de l’étendue du site, l’objectif a été de proposer une simulation visuelle de paysage, en plateforme immersive, au sein de laquelle l’utilisateur perçoit sans rupture la végétation proche et la lointaine.



Sucre1
Rendus 3D de cacaoyer, palétuvier blanc et cannelier de Ceylan


Sucre2
Simulation 3D de végétation sur la plantation sucrière de Rémire




Quelles perspectives ?

A travers ces quelques exemples de travaux sur la production, l’exploration et l’analyse d’environnements archéologiques virtuels, Jean-Baptiste démontre l’intérêt de développer – pour et avec les archéologues - la production adaptative et itérative d’environnements archéologiques 3D, mais aussi l’utilisation d’environnements archéologiques virtuels. Il est désormais possible d’imaginer comment la réalité virtuelle peut accompagner l’évolution du métier d’archéologue vers une sorte d’idéal : voir, sentir, entendre, manipuler, interagir avec des éléments certes virtuels, mais parfois parcellaires dans la réalité. Plus concrètement, les archéologues devraient dans le futur proche pouvoir mesurer, analyser, consulter des sources, interpréter, expérimenter et modéliser par le biais d’un système de réalité virtuelle : bref, pouvoir tester et valider en « situation » des hypothèses de travail.

Dans un futur encore plus lointain, les enjeux se situeront probablement au niveau de la simulation et de l’interaction avec des humains virtuels du passé. Pour restituer leurs gestes dédiés à des tâches disparues, les avancées technologiques permettront ainsi de simuler des humains en activités du passé. Pour l’archéologue immergé pouvant vérifier la cohérence de l’environnement, il serait ainsi envisageable d’appréhender les activités des humains virtuels, de faire interagir ces activités avec l’environnement archéologique virtuel, puis enfin de déduire de ces activités une narration du quotidien d’un site archéologique.

Nul doute que ses travaux futurs trouveront une prolongation également au sein du CNPAO, le Conservatoire Numérique du Patrimoine Archéologique de l'Ouest, dont Jean-Baptiste est le coordinateur. Une initiative originale qui fédère archéologues et informaticiens d’horizons divers (université de Rennes 1, CNRS, INSA, INRAP, INRIA), et qui lui avait valu en 2014 le prix Werner Weber.


Contact
Jean-Baptiste Barreau (CReAAH) / @
Alain-Hervé Le Gall (multiCOM OSUR)





0 Commentaires